
Phase Vocoder Algorithm For Pitch Shifting

Warren L. G. Koontz

May 30, 2019

1 Introduction

This short note provides a rough description of the phase vocoder pitch shift-
ing algorithm. The algorithm is described in the MATLAB documentation1.
However, this note provides more information about the phase modification
step.

The algorithm processes a sequence of blocks of audio samples. In sim-
plest terms, each block of audio samples is processed as follows:

� Compute the short time Fourier transform (STFT).

� Adjust the phase component of the transform.

� Compute the inverse short time Fourier transform (ISTFT)

� Re-sample the recovered audio samples.

The following sections describe the forward and inverse STFT and the ra-
tionale and process for adjusting the phase component.

2 Short Time Fourier Transform

This section briefly describes the short time Fourier transform (STFT) and
its inverse (ISTFT). The input to the STFT is a block of real-valued audio
samples. The number of samples in the block is called the analysis length.
The output of the STFT is a complex-valued Fourier transform whose length
(i.e., number of frequency bins) is called the window length. The window
length is generally larger than the analysis length and in this implementation

1www.mathworks.com/help/audio/examples/pitch-shifting-and-time-dilation-

using-a-phase-vocoder-in-matlab.html

1

it is the analysis length time an integer power of 2. The input to the ISTFT is
a complex-valued Fourier transform and the output is a block of real-valued
audio samples. For this to be the case, the input to the ISTFT must be
conjugate symmetrical. In the phase vocoder application, the output of the
STFT and the input to the ISTFT have the same length (i.e., the window
length). However, number of ISTFT output samples, called the synthesis
length, can differ from the analysis length.

The STFT is implemented as an object that includes an initialization
method to set up the necessary parameters and arrays and a step method to
process each block of audio samples. The following MATLAB code fragment
describes the heart of the step method:

sampleBuf fer = [sampleBuf fer ((ana lys i sLength +1):end) sampleBlock] ;
f f tOutput = f f t (sampleBuf fer .* sqrt (hann (windowLength , ‘ p e r i od i c ’))) ;

The sample buffer is an array whose size is equal to the window length. At
each invocation of the step method, the new block of samples is shifted into
the sample buffer, shoving out the oldest block. The output is then deter-
mined by computing the discrete Fourier transform (DFT) of the product
of the sample buffer and a window function. The DFT is computed using a
version of the fast Fourier transform (FFT) algorithm. The window function
is the square root of the periodic Hann function, which is given by

h(n) = 0.5(1− cos
2πn

N
), 0 ≤ n < N (1)

where N is the window length + 1.
The ISTFT is also implemented as an object with an initialization method

and a step method. The following MATLAB code fragment describes the
heart of the ISTFT step method:

sampleBuf fer += i f f t (f f tData) . * sqrt (hann (windowLength , ‘ p e r i od i c ’)) ;
sampleBlock = sampleBuf fer (1 : synthes i sLength)* gain ;
sampleBuf fer = [sampleBuf fer (synthes i sLength +1:end) zeros (1 , synthes i sLength)] ;

In the first line, the sample buffer, which is initialized to all zeros, is in-
cremented by the product of the inverse DFT of the input (fftData) and
the same window function used in the STFT. The output samples are then
copied from the sample buffer starting at position 1; the number of output
samples is equal to the synthesis length. The samples in the sample buffer
are multiplied by a gain factor given by

G = LS

LW−1∑
n=0

h(n) (2)

2

where LS is the synthesis length and LW is the window length. Finally,
sample buffer is shifted to shove out the output samples and shift in an
equal number of zeros. This process is known as overlap-add.

What happens if the output of the STFT is passed unchanged to the
ISTFT? If the synthesis length matches the analysis length and the window
length is chosen well, the output of the ISTFT should match the input to the
STFT. However, the pitch shifting algorithm includes some meddling with
the transformed samples before passing them to the ISTFT. This meddling
is described in the next section.

3 Adjusting the Pitch

The pitch adjustment algorithm is based on a tempo adjustment algorithm,
i.e., and algorithm to change the tempo without changing the pitch. The
tempo change is turned into a pitch change by re-sampling.

Let X(n), 0 ≤ n < LW be the output of a step of the STFT and let
A(n) and φ(n) be the magnitude and phase of X(n). The input to the
corresponding step of the ISTFT will be Y (n), 0 ≤ n < LW with the same
magnitude A(n) but a modified phase ψ(n).

Let φprev(n) be the value of φ(n) from the previous invocation of the
STFT step and let

∆φ(n) = φ(n)− φprev(n) (3)

This phase change occurs over a time period of LA sample periods, LA

being the analysis length. We want to alter this phase change in order
to vary either the tempo or the pitch of the audio. Unfortunately, both
φ(n) and φprev(n) are “wrapped” to lie in the range −π ≤ φ ≤ π so that
0 ≤ |∆φ(n)| ≤ 2π. The actual phase change is ∆φ(n) + 2πk where k is the
(unknown) number of wraps. We have to somehow “unwrap” ∆φ(n) to find
the actual phase change and then modify the unwrapped change.

We start by expressing the wrapped phase change as

∆φ(n) = ∆φun(n)− 2πk (4)

where ∆φun(n) is the unwrapped phase change that we seek. The frequency
normally associated with the nth bin is 2πn/LW radians per sample. If this
were the actual frequency of the signal component in this bin, then the total
phase change would be

∆φ0(n) = 2πnLA/LW (5)

3

If we subtract (5) from (4), we have

∆φerr = ∆φun(n)−∆φ0(n)− 2πk (6)

If we assume that the difference between the actual bin frequency and the
nominal bin frequency 2πn/LW is less than or equal to one half the bin
width 2π/LW , then

|∆φun(n)−∆φ0(n)| ≤ πLA/LW (7)

This implies that we can isolate the difference ∆φun(n) − ∆φ0(n) by sub-
tracting an appropriate number of multiples of 2π from ∆φerr. For a given
angle θ, this can be done as follows:

θunwrap = θ − 2πbθ/2πe (8)

The unwrapped angle θunwrap lies between −π and π. Applying this to (6)
we have

∆φun(n)−∆φ0(n) = ∆φerr − 2πb∆φerr/2πe (9)

so that the unwrapped phase change we seek is given by

∆φun(n) = ∆φerr − 2πb∆φerr/2πe+ ∆φ0(n) (10)

The following MATLAB script, copied almost directly from MATLAB doc-
umentation, performs the calculations described so far:

uwdata = 2*pi* a l en * (0 : (wlen−1)) ’/ wlen ;
uwphase = phase−prevphase−uwdata ;
uwphase = uwphase−round(uwphase /(2*pi))*2* pi ;
uwphase = uwphase+unwrapdata ;

The next step is to modify the phase change by a factor determined by
the desired pitch shift. For a pitch shift of ns semitones, the factor is given
by

α = 2ns/12 (11)

The resulting modified phase is given by

ψ(n) = ψprev(n) + α∆φun(n) (12)

and the input to the ISTFT is given by

Y (n) = A(n)∠ψ(n) (13)

4

Because of the modification, the synthesis length for the ISTFT must also
be modified by the factor α, i.e.,

LS = bαLAe (14)

The output of the ISTFT is a tempo-shifted version of the input to the
STFT. Re-sampling from LS samples to LA samples restores the tempo and
shifts the pitch by the desired amount.

5

