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A feedback delay network, as described in audio signal processing litera-
ture, can be viewed as a generalized state space filter. These notes summa-
rize my view of an FDN and provide some straightforward design equations.

1 State Space Representation of an FDN

Figure 1 illustrates a state space representation of a feedback delay network.
It is identical to the standard state space representation of a linear, time-
invariant system, except that the single sample period delay is replaced by a
more complex transform. For our purposes, the transform H(z) represents a
bank of delay lines representing propagation delay and frequency-dependent
attenuation. Specifically

H(z) =


z−M1A1(z) 0 . . . 0

0 z−M2A2(z) . . . 0
...

...
. . .

...
0 0 . . . z−MNAN (z)

 (1)

where
Ai(z) =

gi
1− diz−1

(2)

The time-domain relationship between the outputs xi and the inputs vi of
the delay ban is

xi(n) = dixi(n− 1) + givi(n−Mi) (3)

The rest of the system is described by the following equations

v = As + Bx (4)

y = Cs (5)
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Figure 1: Feedback Delay Network Block Diagram

where

Aij =
1

N
− δij (6)

B =
[
1 1 . . . 1

]T
(7)

C =
[
1 1 . . . 1

]
/N (8)

Our choices for A, B, and C lead to fairly straightforward results. The
output is given by

y(n) =
1

N

N∑
i=1

xi(n) (9)

The delay bank inputs are given by

vi(n) =
N∑
j=1

Aijxj(n) + u(n)

=

N∑
j=1

(
1

N
− δij

)
xj(n) + u(n)

= y(n) + u(n)− xi(n) (10)

This can also be written in matrix notation as

v(n) = B[y(n) + u(n)]− x(n) (11)
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Figure 2: Simplified Feedback Delay Network

Figure 2 illustrates this simplified structure, which is valid for the values of
A, B, and C that we have chosen.

2 Delay Bank Parameters

As stated above, the FDN includes N delay lines represented in the fre-
quency domain as

h(z) = z−M
g

1− dz−1
(12)

This delay line represents a propagation path between two points in the
space of interest. The sample delay z−M accounts for the propagation delay
and the single-pole filter accounts for loss due to absorption. For a path of
length L, the sample delay M is given by

M = round(fsL/c) (13)

where fs is the sampling rate in Hz and c is the speed of sound. The
magnitude of the loss is given by

A(Ω) =
g

|1− de−jΩ|
(14)

3



where Ω is the frequency in radians/sample. Since the absorption of sound
by air increases significantly with frequency, we will assume the following:

A(0) = 1 (15)

A(π) = 10−αL/20

= AHF (16)

where α is the absorption coefficient in dB/m at the Nyquist frequency. This
leads to the following equations for g and d:

g =
2AHF

1 +AHF

d =
1−AHF

1 +AHF
(17)

Given the path length, high-frequency absorption coefficient, and the
sampling rate, we can us Equations 17 and 13 to determine the parameters
M , g, and d of the delay line. In order to complete the delay bank, we need
to decide the number of delay lines N and a set of path lengths. In my
experience, fewer than ten delay lines (say N = 6) are sufficient to produce
a nice reverb effect. I use an exponential sequence of path lengths ranging
from L1 = Lmax to LN = Lmax/10. I determine Lmax from the room area,
which I presume to be given, based on some assumptions about the shape
of the room.
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