
State Space Filters for Artificial Reverberation
Effects

Warren L. G. Koontz
Rochester Institute of Technology

Rochester, NY USA
wlkmet@rit.edu

Abstract—This paper shows the relation between state space
filters and both feedback delay networks and more complex
structures that can add a reverb effect to an audio signal. The
paper goes on to show how one of these structures, known as
Multiverb, can be implemented in a straightforward manner as
both a MATLAB streaming audio script and a VST audio plug-
in.

Index Terms—audio signal processing

I. INTRODUCTION

In a live musical performance, or any other situation involv-
ing live sound production, sound travels from the source to the
listener over multiple paths, creating a sometimes pleasing and
sometimes confusing effect known as reverberation. Efforts
to produce a pleasing artificial reverb effect began in 1947
with the recording of ”Peg o’ My Heart” by The Harmonicats.
The ”reverb chamber” used to produce this recording was the
studio bathroom. Since that time, many approaches to artifi-
cial reverberation have be developed, including mechanical,
electronic, and, most recently, digital signal processing (DSP)
techniques.

In a previous paper [1], my colleagues and I presented a
DSP algorithm for creating an artificial reverberation (AR)
effect. The algorithm is an extension of the feedback delay
network (FDN) approach described in [2], [3]. This paper
shows how both our algorithm, which we call “multiverb”,
and the FDN algorithm can can be viewed as extensions of
a standard state space filter. In addition, this paper provides
information about implementing multiverb in MATLAB and
as a VST audio plug-in.

II. DSP APPROACH TO ARTIFICIAL REVERBERATION

Figure 1 shows an example of the impulse response (IR)
of a reverberant space. The initial part of the IR is referred
to as early reflections and the latter part is referred to as
late reverberation. The IR decays more or less exponentially
and the echo density increases with time. Given the IR of
a reverberant space, we can add an AR effect to an audio
signal by convolving the signal with the IR. Fast convolution
algorithms, described in [4] and elsewhere, make this approach
quite practical. Moreover, we can measure the IR of a given
space by producing and recording a sound in that space.
The swept sine method described in [5] provides an accurate
measure of the IR.

Fig. 1. Impulse Response of Reverberant Space.

Another approach is to design a digital filter with a rever-
berant IR and pass the audio signal through this filter. In the
1960s, Schroeder and Logan [6] used combinations of comb
filters, all-pass filters, and mixing matrices to add AR to a
digital audio signal. They combined comb filters in parallel
and all-pass filters in series and sometimes used the mixing
matrix to extract one or two output channels from individual
filter outputs. A descendant of their work, known as “freeverb,”
is still widely used. Freeverb was developed by someone
known as “Jezar at Dreampoint,” and source code for free-
verb is currently available at http://blog.bjornroche.com/2012/
06/freeverb-original-public-domain-code-by.html and perhaps
elsewhere. Feedback delay networks as described in [3] were
introduced more recently.

In the next section, we will present the FDN as a logical
extension of a standard state space filter. We will then show
how the FDN can be extended to a two-channel structure that
is multivefrb.

III. STATE SPACE FILTERS FOR ARTIFICIAL
REVERBERATION

All of the filters that we will consider are discrete-time,
linear, time-invariant systems. The basic filter is described by
the following pair of equations:

x(n+ 1) = Ax(n) +Bu(n)

y(n) = Cx(n) +Du(n) (1)

where x is the N×1 state vector, y is the M×1 output vector,
u is the L × 1 input vector, A is the N ×N state transition

Fig. 2. SISO State Space Filter.

Fig. 3. Feedback Delay Network.

matrix, B is an N × L matrix, C is an M × N matrix, and
D is an M × L matrix. In the z domain, (1) becomes

zx(z) = Ax(z) +Bu(z)

y(z) = Cx(z) +Du(z) (2)

Figure 2 displays (2) for the single input, single output
(SISO) case as a signal flow diagram. Figure 3 introduces
an extension of the state space filter where the single sample
delay z−1I is replaced with a more general N × N matrix
H(z). This extended filter is described by the following set of
equations:

v(z) = Ax(z) +Bu(z)

y(z) = Cx(z) +Du(z)

x(z) = H(z)v(z) (3)

A more direct relation between the input and the output is
given by

y(z) = {C[I−H(z)A]−1H(z)B+D}u(z) (4)

To construct a basic FDN, we start by defining H(z) as a set
of delay lines with varying delays:

H(z) =

z−M1 0 · · · 0
0 z−M2 · · · 0
...

...
. . .

...
0 0 · · · z−MN

 (5)

Fig. 4. Multiverb Filter.

We complete the basic FDN by defining the remaining param-
eters:

A =
1

N
O− I

B =

1
1
...
1

C =

r

N

[
1 1 · · · 1

]
D = 1− r (6)

where O is an N×N matrix of all ones. Defined this way, the
FDN is a stable filter and the parameter r can be used to vary
the output from fully filtered (r = 1) to unfiltered (r = 0).

We can take the FDN a step further by defining H(z) as

H(z) =

z−M1A1(z) 0 · · · 0

0 z−M2A2(z) · · · 0
...

...
. . .

...
0 0 · · · z−MNAN (z)

(7)

where Ak(z) is an attenuation function given by

Ak(z) =
gk

1− dkz−1
(8)

Now H(z) models a set of delay lines with frequency-
dependent losses. The attenuation varies between gk/(1− dk)
at 0 Hz and gk/(1 + dk) at the Nyquist frequency. This leads
to a relatively straightforward method to compute gk and dk
as described in [4]. The g and d parameters will be called gain
and damping, respectively.

In the time domain, this FDN with lossy delay lines is
expressed as

v(n) = Ax(n) +Bu(n)

y(n) = Cx(n) +Du(n)

xk(n+ 1) = dkxk(n) + gkvk(n−Mk) k = 1, 2, . . . , N
(9)

As discussed in Section V, the last line of (9) can be imple-
mented efficiently using buffers.

IV. THE MULTIVERB FILTER

The multiverb filter is shown in Figure 4. It is a combination
of two FDN filters and provides two inputs and two outputs
labeled left and right. The internal signals v and x are labeled

Fig. 5. Multiverb Filter Impulse Response.

east and west and there are corresponding eastbound and
westbound delay lines. The filter is governed by the following
set of equations:

vE(z) = AxW (z) +BuL(z)

yL(z) = CxW (z) +DuL(z)

vW (z) = AxE(z) +BuR(z)

yR(z) = CxE(z) +DuR(z)

xE(z) = H(z)vE(z)

xW (z) = H(z)vW (z) (10)

The inputs and outputs are related by

yL(z) = GLL(z)uL(z) +GLR(z)uR(z)

yR(z) = GRL(z)uL(z) +GRR(z)uR(z) (11)

where (dropping the references to z)

GLL = GRR = C[I− (HA)2]−1HAHB+D

GLR = GRL = C[I− (HA)2]−1HB (12)

Although (12) is not a practical means of implementing the
filter, it provides a nice view of the filter as a two-port device.
The time-domain version of (10) is similar to (9), however, and
also leads to an efficient implementation using buffers. The
time domain (difference) equations can be used to determine
the impulse responses corresponding to GLL/RR and GLR/RL.
Examples of these are shown in Figure 5.

V. IMPLEMENTATION

The multiverb filter has been implemented as both a MAT-
LAB prototype and a VST audio plugin. Both implementations
include a GUI with the following control sliders:

• Low and high frequency reverb time seconds.
• Room area in square feet.
• Percent reverb.
• Gain in decibels.

The reverb time and room area control values are used to
determine the delay line lengths (Mk) and the gain and
damping coefficients. The details of these calculations will
not be presented here. The percent reverb is converted to the

Fig. 6. MATLAB Prototype GUI.

parameter r in (6) and the gain is converted from decibels and
applied to the filter output.

A. MATLAB Prototype
The MATLAB prototype takes advantage of MATLAB’s

streaming audio capabilities. Using MATLAB’s audio file
reader and audio player objects, one can easily create a script
to read, process, and play audio from many standard audio
file types. Each iteration of the script’s main loop does the
following:

• Check for and handle updates from the GUI.
• Get next block of audio.
• Process block.
• Set block to player.

Except for updating the filter and processing the block, much
of the script is copied from MATLAB examples. The GUI is
shown in Figure 6.

The block processing code is listed here:

f o r k =1:NS
Veas t =A*Xwest+B*uL (k) ;
Vwest=A* Xeas t +B*uR (k) ;
y (k , 1) = ampl * (rmix *C*Xwest+(1− rmix)* uL (k)) ;
y (k , 2) = ampl * (rmix *C* Xeas t +(1− rmix)* uR (k)) ;
f o r n =1:N

Xeas t (n)= damp (n)* Xeas t (n) + . . .
g a i n (n)* e a s t (n , t a i l (n) + 1) ;

Xwest (n)= damp (n)* Xwest (n) + . . .
g a i n (n)* wes t (n , t a i l (n) + 1) ;

e a s t (n , head +1)= Veas t (n) ;
wes t (n , head +1)= Vwest (n) ;
t a i l (n)=mod (t a i l (n) +1 , dmax) ;

end
head=mod (head +1 , dmax) ;

end

The first part of the loop matches nicely with (10). The nested
loop handles the delay lines using the buffers east and west.

B. VST Audio Plug-in
The VST audio plug-in implementation of the multiverb

filter was developed using the JUCE framework [7]. JUCE

Fig. 7. VST Plug-in GUI.

provides a straightforward procedure to develop audio plug-
ins, including VST plug-ins, in C++ and creates much of
the necessary code automatically. As a developer, your main
concern is to layout the GUI and code your parameter update
and processing algorithms.

JUCE is available as a free download (there are also “pro”
versions) and works with the free version of Visual Studio (I
used VS 2017).

When you start JUCE and select the audio plug-in
option, JUCE creates the frameworks for two classes:
PluginEditor and PluginProcesssor. These two
frameworks provide a starting point for creating the GUI and
processing the audio data. The multiverb GUI is shown in
Figure 7. I will focus on the processing part.

The multiverb algorithm is coded in a C++ class called
Mverb. The class includes an update method and a
process method. The update method computes the delay
line lengths and the gain and damping coefficients based
on the current values of the reverb times and room size
and the process method applies the filter to a block of
two-channel audio samples. The JUCE PluginProcessor
class includes numerous methods, many of which you can
safely ignore. Two key methods are prepareToPlay and
processBlock. You add code to prepareToPlay to get
the parameter values from the GUI and to call the Mverb
update method. You add similar code to processBlock
to get the latest parameter values and call update if either
the reverb times or the room area have changed. Finally, you
add a call to the Mverb process to processBlock.

Of course there are other programming details to attend to,
but these are covered adequately by online JUCE tutorials.
You do the actual coding in the IDE, which in my case is VS
2017. The end result is a .dll file, which you copy to the
appropriate plug-in folder. I have tested multiverb extensively
with Audacity1.

VI. CONCLUSION

This paper shows how a classic state space filter can be
extended to create a feedback delay network and a more

1Audacity® software is copyright ©1999-2016 Audacity Team. The name
Audacity® is a registered trademark of Dominic Mazzoni.

complex structure that we call multiverb. Both the FDN and
multiverb can be designed to produce a reverb effect on audio
signals. The paper also outlines how to implement multiverb
both as a MATLAB prototype and as a VST plug-in. The
VST plug-in implementation is especially useful, since VST
plug-ins are accepted by a variety of hosts2.

REFERENCES

[1] W. L. G. Koontz, S.-Y. Kim, and M. J. Indelicato, “A digital reverberation
simulator based on multi-port acoustic elements,” JMEST, vol. 2, no. 1,
pp. 185–191, January 2015.

[2] J.-M. Jot and A. Chaigne, “Digital delay networks for designing artificial
reverberators,” in Audio Engineering Society Convention 90. Audio
Engineering Society, 1991.

[3] J. O. Smith, Physical Audio Signal Processing: For Virtual Musical
Instruments and Digital Audio Effects. Julius Smith, 2006.

[4] W. Koontz, Introduction to Audio Signal Processing. RIT
Press, 2016. [Online]. Available: https://books.google.com/books?id=
xOAYMQAACAAJ

[5] A. Farina, “Simultaneous measurement of impulse response and distortion
with a swept-sine technique,” in Audio Engineering Society Convention
108. Audio Engineering Society, 2000, pp. 18–22.

[6] M. R. Schroeder and B. F. Logan, “Colorless artificial reverberation,” IRE
Transactions on Audio, no. 6, pp. 209–214, 1961.

[7] “Juce framework for audio applications.” [Online]. Available: https:
//juce.com/

2Pro Tools is a notable exception

